Will Greenland melting halt the thermohaline circulation?
نویسندگان
چکیده
[1] Climate projections for the 21st century indicate a gradual decrease of the Atlantic Meridional Overturning Circulation (AMOC). The weakening could be accelerated substantially by meltwater input from the Greenland Ice Sheet (GIS). Here we repeat recent experiments conducted for the Intergovernmental Panel of Climate Change, providing an idealized additional source of freshwater along Greenland’s coast. For conservative and high melting estimates, the AMOC reduction is 35% and 42%, respectively, compared to a weakening of 30% for the original A1B scenario. Even for the high meltwater estimate the AMOC recovers in the 22nd century. The impact of the additional fresh water is limited to further enhancing the static stability in the Irminger and Labrador Seas, whereas the backbone of the overturning is maintained by the overflows across the Greenland-Scotland Ridge. Our results suggest that abrupt climate change initiated by GIS melting is not a realistic scenario for the 21st century. Citation: Jungclaus, J. H., H. Haak, M. Esch, E. Roeckner, and J. Marotzke (2006), Will Greenland melting halt the thermohaline circulation?, Geophys. Res. Lett., 33, L17708, doi:10.1029/2006GL026815.
منابع مشابه
Has Arctic Sea Ice Loss Contributed to Increased Surface Melting of the Greenland Ice Sheet?
In recent decades, the Greenland ice sheet has experienced increased surface melt. However, the underlying cause of this increased surface melting and how it relates to cryospheric changes across the Arctic remain unclear. Here it is shown that an important contributing factor is the decreasingArctic sea ice. Reduced summer sea ice favors stronger and more frequent occurrences of blocking-high ...
متن کاملLong term ocean simulations in FESOM: Evaluation and application in studying the impact of Greenland Ice Sheet melting
The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to ...
متن کاملReconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR
Results from a 28-year simulation (1979– 2006) over the Greenland ice sheet (GrIS) reveal an increase of solid precipitation (+0.4±2.5 km3 yr−2) and runoff (+7.9±3.3 km3 yr−2) of surface meltwater. The net effect of these competing factors is a significant Surface Mass Balance (SMB) loss of −7.2±5.1 km3 yr−2. The contribution of changes in the net water vapour flux (+0.02±0.09 km3 yr−2) and rai...
متن کاملCorrigendum: Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation
The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key componen...
متن کاملSensitivity of thermohaline circulation to decadal and multidecadal variability
In this paper, stochastic freshwater inputs with different variabilities are introduced into an Earth Model of Intermediate Complexity to study their effect on the behaviour of the thermohaline circulation (THC). The variability in the stochastic signal was set to be either decadal or multidecadal (70 years), based on intensity modulation of the El Niño-Southern Oscillation (ENSO) phenomenon. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006